Showing posts with label SIMSCALE. Show all posts
Showing posts with label SIMSCALE. Show all posts

Monday, January 29, 2024

💥💥💥 Comparison of SU2, Ansys Fluent and Helyx-OS in terms of capabilities

 SU2, Ansys Fluent and Helyx-OS are three popular CFD software that have different features, advantages and disadvantages. Here is a brief summary of their main capabilities:

- SU2: SU2 is a free and open-source software that is designed for compressible flow applications. It has many convective numerical schemes, turbulence models, and an adjoint solver for shape optimization. It can also handle complex geometries, multiphysics problems, and parallel computing. However, it is not very well-known and may have less support and documentation than commercial software¹².

- Ansys Fluent: Ansys Fluent is a commercial software that can perform a wide range of simulations, including incompressible and compressible flows, multiphase flows, heat transfer, combustion, acoustics, and more. It has various solvers, numerical schemes, and turbulence models, as well as a user-friendly interface and a large user community. However, it is expensive and requires a license to use. It may also have limitations in parallel computing and meshing²⁴.

- Helyx-OS: Helyx-OS is a graphical user interface for OpenFOAM, which is another free and open-source software for CFD. It allows users to set up, run, and post-process OpenFOAM cases in a simpler and faster way. It can handle complex geometries, unstructured meshes, and parallel computing. However, it may have less features and capabilities than OpenFOAM itself, and it may not be compatible with the latest versions of OpenFOAM⁵ .

- SU2: SU2 can also perform unsteady simulations, such as harmonic balance and dual time-stepping methods. It has a Python-based framework for automatic differentiation, which enables gradient-based optimization and uncertainty quantification. It also has a modular structure that allows users to customize and extend the code¹².

- Ansys Fluent: Ansys Fluent can also perform mesh adaptation, moving and deforming meshes, and overset meshes. It has a comprehensive library of physical models, such as reacting flows, multiphase flows, porous media, radiation, and more. It also has a user-defined function feature that allows users to write their own code and link it to Fluent⁴ .

- Helyx-OS: Helyx-OS can also perform steady and transient simulations, as well as large eddy simulation and detached eddy simulation. It has a graphical interface for meshing, boundary conditions, solver settings, and post-processing. It also has a built-in mesh quality checker and a mesh conversion tool⁵ .

Source:

(1) Comparison between SU2 and Fluent - CFD Online. https://www.cfd-online.com/Forums/su2/221077-comparison-between-su2-fluent.html.

(2) Computational Fluid Dynamics Analyses of a Wing with Distributed .... https://mdpi-res.com/d_attachment/aerospace/aerospace-10-00064/article_deploy/aerospace-10-00064-v2.pdf?version=1674032673.

(3) Ansys Fluent vs SU2 [2023]: In-Depth Comparison Report. https://www3.technologyevaluation.com/solutioncomparison/61384/ansys-fluent/54099/su2.

(4) https://doi.org/10.3390/.

(5) Computational Fluid Dynamics Analyses of a Wing with Distributed ... - MDPI. https://www.mdpi.com/2226-4310/10/1/64.

Can you recommend some other CFD software?

Sure, I can recommend some other CFD software that you may find useful for your engineering projects. Here are some of them:


- COMSOL Multiphysics: COMSOL Multiphysics is a commercial software that can perform CFD simulations as well as other types of physics-based simulations, such as structural mechanics, electromagnetics, heat transfer, and more. It has a user-friendly interface that allows you to create and modify models using a graphical approach. It also has a powerful equation-based modeling feature that lets you define your own equations and boundary conditions. It supports various solvers, numerical methods, and meshing options. However, it is expensive and requires a license to use. It may also have limitations in parallel computing and scalability¹.

- OpenFOAM: OpenFOAM is a free and open-source software that can perform CFD simulations as well as other types of fluid dynamics simulations, such as multiphase flows, turbulence, combustion, acoustics, and more. It has a modular and flexible structure that allows you to customize and extend the code. It also has a large library of solvers, numerical schemes, and turbulence models. It supports complex geometries, unstructured meshes, and parallel computing. However, it has a steep learning curve and requires a good knowledge of programming and CFD. It may also have less support and documentation than commercial software².

- SimScale: SimScale is a cloud-based software that can perform CFD simulations as well as other types of engineering simulations, such as structural mechanics, thermodynamics, acoustics, and more. It has a web-based interface that allows you to access and run simulations from any device and location. It also has a collaborative platform that lets you share and review your projects with other users. It supports various solvers, numerical methods, and meshing options. However, it requires an internet connection and a subscription to use. It may also have limitations in data security and privacy³.

Source:

(1) 11 Best CFD Software Solutions to Boost Your Engineering Efficiency. https://geekflare.com/best-cfd-software/.

(2) OpenFOAM | Free CFD Software | The OpenFOAM Foundation. https://openfoam.org/.

(3) ANSYS Fluent vs. Other CFD Softwares - MR CFD. https://www.mr-cfd.com/ansys-fluent-vs-other-cfd-softwares/.

Are there any other open source CFD software ?

Yes, there are many other open source CFD software that you can use for your fluid dynamics simulations. Here are some of them, along with a brief description of their features and advantages:


- Elmer: Elmer is a multiphysical simulation software that can perform CFD simulations as well as other types of physics-based simulations, such as structural mechanics, electromagnetics, heat transfer, and more. It has a graphical user interface that allows you to create and modify models using a graphical approach. It also has a powerful equation-based modeling feature that lets you define your own equations and boundary conditions. It supports various solvers, numerical methods, and meshing options¹.

- FEATool Multiphysics: FEATool Multiphysics is a MATLAB and GNU Octave toolbox that can perform CFD simulations as well as other types of engineering simulations, such as structural mechanics, heat transfer, electromagnetics, and more. It has a user-friendly interface that allows you to set up, solve, and post-process models using a graphical or script-based approach. It also has a built-in interface for OpenFOAM, FEniCS, and SU2, which enables you to use these solvers within the FEATool environment².

- Code_Aster: Code_Aster is a finite element software that can perform CFD simulations as well as other types of mechanical simulations, such as solid mechanics, contact, fracture, fatigue, and more. It has a command-line interface that allows you to define and execute models using a text-based language. It also has a large library of physical models, such as turbulence, multiphase flows, combustion, and more. It supports complex geometries, adaptive mesh refinement, and parallel computing³.

- Code_Saturne: Code_Saturne is a finite volume software that can perform CFD simulations for various types of flows, such as incompressible, compressible, laminar, turbulent, reactive, and more. It has a graphical user interface that allows you to set up, run, and post-process models using a graphical approach. It also has a modular and flexible structure that allows you to customize and extend the code. It supports complex geometries, unstructured meshes, and parallel computing⁴.

I hope this helps you find the best open source CFD software for your needs. If you want to learn more, you can check my blog. Have a nice day! 😊

¹: [Elmer - CSC](https://www.csc.fi/web/elmer)

²: [FEATool Multiphysics - MATLAB FEA Physics Simulation Toolbox](https://www.featool.com/)

³: [Code_Aster - Wikipedia](https://en.wikipedia.org/wiki/Code_Aster)

⁴: [Code_Saturne - Wikipedia](https://en.wikipedia.org/wiki/Code_Saturne)

Source:

(1) OpenFOAM | Free CFD Software | The OpenFOAM Foundation. https://openfoam.org/.

(2) Open-Source CFD Software Packages: Good Enough and Free. https://www.digitalengineering247.com/article/open-source-cfd-software-packages-good-enough-and-free.

(3) ANSYS Fluent Alternatives and Similar Software | AlternativeTo. https://alternativeto.net/software/ansys-fluent/.

(4) Free ANSYS Fluent Alternatives | AlternativeTo. https://alternativeto.net/software/ansys-fluent/?license=free.

(5) OpenFOAM Alternatives and Similar Software | AlternativeTo. https://alternativeto.net/software/openfoam/.

Friday, August 11, 2023

How to deal with peak stresses on Ansys Structural (Mechanical)

 - **Stress averaging**: This method is used to smooth out the stress distribution by averaging the stresses over a certain area or volume. This can reduce the effect of local stress concentrations and provide a more realistic estimate of the average stress in the structure. However, this method may also hide some important stress variations and details, and may not be applicable for complex geometries or non-linear problems. You can read more about this method [here](^1^).


- **Submodeling**: This method is used to perform a detailed analysis of a small region of interest within a larger model. This can increase the accuracy and resolution of the solution in the region where peak stresses occur, without increasing the computational cost and time for the whole model. However, this method requires careful selection of the submodel boundaries and loading conditions, and may not capture the global effects of the structure. You can read more about this method [here](^2^).

- **Singularity elimination**: This method is used to modify the geometry or boundary conditions of the model to eliminate or reduce the singularities that cause peak stresses. Singularities are points or lines where the stress becomes infinite or undefined, such as sharp corners, re-entrant angles, or point loads. By rounding off the corners, adding fillets, or distributing the loads, the singularities can be avoided or minimized. However, this method may also alter the actual behavior of the structure and introduce errors or uncertainties. You can read more about this method [here](^3^).


These are some of the methods that can be used to deal with peak stresses on ANSYS. I hope this helps you understand them better. I


Source:

(1) Understanding and Dealing with Artificially High Stress Using Ansys .... https://www.youtube.com/watch?v=iTqPgcTurXc.

(2) Stress Analysis with Ansys Mechanical. https://courses.ansys.com/index.php/courses/stress-analysis-with-ansys-mechanical/.

(3) What is Stress Linearization? - graspengineering.com. https://www.graspengineering.com/what-is-stress-linearization/.

(4) undefined. https://bing.com/search?q=.

If U want more intresting entries try links below

Static structural analysis (simulation) in Ansys - for beginners

How to add / generate subdomain on existing geometry - Ansys Design Modeler

Investigation of the influence of conductivity of two-component geometry in Ansys Transient Thermal

Popular posts