Cnjugate heat transfer is a term that refers to the simulation of heat transfer between a fluid and a solid, or between two fluids separated by a solid wall. In Ansys software, conjugate heat transfer is usually achieved by coupling the fluid flow equations with the heat equation in both the fluid and the solid domains. This allows the software to account for the effects of convection, conduction, and radiation on the temperature distribution and heat flux in the system.
Conjugate heat transfer is important for many engineering applications that involve thermal processes, such as cooling systems, heat exchangers, combustion engines, electromobility, and more. By using Ansys software to model conjugate heat transfer, engineers can optimize the design and performance of these systems, as well as predict and prevent potential problems such as overheating, thermal stress, or thermal runaway.
Some examples of Ansys software that can handle conjugate heat transfer are [Ansys Fluent](^1^), [Ansys Mechanical](^2^), and [Ansys Twin Builder](^3^). These software packages have different features and capabilities for simulating conjugate heat transfer problems, such as meshing methods, physical models, boundary conditions, solver algorithms, and post-processing tools. You can learn more about these software packages by visiting their websites or reading some of their documentation and tutorials¹²³.
Source:
(1) Heat Exchanger Design Software | Ansys. https://www.ansys.com/applications/heat-exchangers.
(2) Ansys Fluent Heat Transfer Modeling | Ansys Training. https://www.ansys.com/training-center/course-catalog/fluids/ansys-fluent-heat-transfer-modeling.
(3) Intro to Heat Transfer Modeling in Ansys Fluent — Lesson 1. https://courses.ansys.com/index.php/courses/heat-transfer-modeling-in-ansys-fluent/lessons/introduction-to-heat-transfer-modeling-in-ansys-fluent-lesson-1/.
(4) Heat Exchanger Design Software | Ansys. https://www.ansys.com/applications/heat-exchangers.
(5) Ansys Fluent Heat Transfer Modeling | Ansys Training. https://www.ansys.com/training-center/course-catalog/fluids/ansys-fluent-heat-transfer-modeling.
(6) Intro to Heat Transfer Modeling in Ansys Fluent — Lesson 1. https://courses.ansys.com/index.php/courses/heat-transfer-modeling-in-ansys-fluent/lessons/introduction-to-heat-transfer-modeling-in-ansys-fluent-lesson-1/.
Example od Conjugate Heat Transfer on Ansys Fluent
One example of conjugate heat transfer in Ansys Fluent is the simulation of a heat sink, which is a device that dissipates heat from a hot component (such as a CPU) to a cooler fluid (such as air). A heat sink typically consists of a solid base that is attached to the hot component, and a series of fins that extend from the base and increase the surface area for heat transfer. The fluid flows over the fins and carries away the heat from the solid.
To model this problem in Ansys Fluent, you need to follow these steps:
- Create the geometry of the heat sink and the fluid domain in Ansys DesignModeler or any other CAD software. You can use parameters to define the dimensions and properties of the heat sink and the fluid.
- Import the geometry into Ansys Meshing and generate a suitable mesh for both the solid and the fluid domains. You can use different meshing methods, such as sweep, hex-dominant, or tetrahedral, depending on the complexity and quality of the geometry. You can also use inflation layers to capture the boundary layer effects near the walls.
- Set up the physics and boundary conditions in Ansys Fluent. You need to enable energy equation and choose a suitable turbulence model for the fluid flow. You also need to specify the material properties and thermal conditions for both the solid and the fluid domains. For example, you can use a constant heat flux or temperature for the base of the heat sink, and a constant velocity or pressure for the inlet and outlet of the fluid domain. You can also use radiation models if you want to account for thermal radiation effects.
- Solve the problem and monitor the convergence. You can use different solver algorithms, such as coupled or segregated, depending on the stability and accuracy of the solution. You can also create report definitions and plots to monitor quantities of interest, such as temperature, heat transfer coefficient, Nusselt number, etc.
- Post-process the results and analyze them. You can use various tools in Ansys Fluent to visualize and quantify the results, such as contours, vectors, streamlines, iso-surfaces, etc. You can also export the results to other software, such as Ansys CFD-Post or Excel, for further processing.
If you want to see a detailed tutorial on how to perform this example in Ansys Fluent, you can watch this video¹ or read this document⁴. They will guide you through each step of the process and explain how to use different features and options in Ansys Fluent.
I hope this answer helps you understand what conjugate heat transfer is in Ansys Fluent and how to model it. If you have any more questions, feel free to ask me. Have a nice day! 😊
Source:
(1) ANSYS Fluent Student: Conjugate Heat Transfer - YouTube. https://www.youtube.com/watch?v=gEf48MworcA.
(2) Tutorial — Heat Transfer Modeling in Ansys Fluent — Lesson 6. https://courses.ansys.com/index.php/courses/heat-transfer-modeling-in-ansys-fluent/lessons/tutorial-heat-transfer-modeling-in-ansys-fluent-lesson-6/.
(3) ANSYS Fluent Student: Conjugate Heat Transfer in a Heat Sink. https://www.youtube.com/watch?v=OR1g6AsUJyI.
(4) ANSYS Fluent Tutorial | Conjugate Heat Transfer in a Rectangular Channel with Protrusions | Part 1/2. https://www.youtube.com/watch?v=5JoL_Qbxxq0.
If U want more interesting topics please see links below
What is, and when to use MRF method in Ansys Fluent
No comments:
Post a Comment